Electron Transfer to Decorated Graphene Oxide Particles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing electron transfer dynamics of pyranine with reduced graphene oxide.

A stable reduced graphene oxide (rGO) was prepared and characterized by X-ray diffraction (XRD) and laser Raman spectroscopy. Steady state and time-resolved fluorescence quenching studies have been carried out to elucidate the process of electron transfer from excited pyranine (POH) into the rGO dispersion. POH adsorbed strongly on rGO dispersion with an apparent association constant of 33.4 (m...

متن کامل

Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles

Zinc Oxide nanoparticles (ZnO-NPs) and graphene carbon material, due to lower drug resistance, can replace antibiotics, and by decorating of graphene with Zn-NPs, their properties can be greatly improved. The purpose of this study was to evaluate the antioxidant and antibacterial effects of ZnO-NPs biosynthesized using Crocus Sativus petal extract, graphene and graphene decorated by ZnO-NPs bio...

متن کامل

Polymeric nanofibers decorated with reduced graphene oxide nanoflakes

332 catalysts, storage devices, etc. Carbon is considered a rich family for nanoscale systems, and it exhibits extensive functionalities which depend on its structural and functional arrangements. But not all members of the carbon family have become relevant for application in modern society. The most promising research has focused on two-dimensional (2D) graphene-based systems, with an exponen...

متن کامل

Titanium-decorated graphene oxide for carbon monoxide capture and separation.

We propose titanium-decorated graphene oxide (Ti-GO) as an ideal sorbent for carbon monoxide (CO) capture and separation from gas mixtures. Based on first-principles calculations, Ti-GO exhibits a large binding energy of ~70 kJ mol(-1) for CO molecules, while the binding energies for other gases, such as N(2), CO(2), and CH(4), are significantly smaller. The gas adsorption properties of Ti-GO a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Angewandte Chemie

سال: 2019

ISSN: 0044-8249,1521-3757

DOI: 10.1002/ange.201907393